Skip to contents

Downloads processed CVAP data for a state. CVAP data is rounded to the nearest 5 so totals may not sum properly, but will be close.

Usage

cvap_get(
  state,
  year = 2023,
  geography = "block group",
  out_file = NULL,
  moe = FALSE,
  clean = TRUE
)

Arguments

state

character. The state to get data for or nation for the nation file.

year

numeric. Year for the data in 2009 to 2023.

geography

character. Level of geography. Default is 'block group'. See Details.

out_file

file to save downloaded rds to

moe

Include margin of error? Default is FALSE.

clean

Should variable names be standardized? Default is TRUE.

Value

tibble of data

Details

Geography options are

  • 'block group': block group level data

  • 'cd': congressional district data (years 2016+)

  • 'county': county-level data

  • 'place': place-level data

  • shd': state house district data (years 2016+)

  • 'ssd': state senate district data (years 2016+)

  • 'state': state-level data

  • 'tract': tract-level data

  • 'nation': nation-wide data

Examples

cvap_get('DE')
#> # A tibble: 706 × 10
#>    GEOID     cvap cvap_white cvap_black cvap_hisp cvap_asian cvap_aian cvap_nhpi
#>    <chr>    <dbl>      <dbl>      <dbl>     <dbl>      <dbl>     <dbl>     <dbl>
#>  1 1000104…  1245       1115         35        90          0         0         0
#>  2 1000104…  1795       1600        180        15          0         4         0
#>  3 1000104…  1435       1330        105         0          0         0         0
#>  4 1000104…   890        725         95        65          0         0         0
#>  5 1000104…  1715       1260        335        80         25         0         0
#>  6 1000104…   710        470        225        15          0         0         0
#>  7 1000104…  1370        590        525       160          4        10         0
#>  8 1000104…  1025        770        150       105          0         0         0
#>  9 1000104…  1135        580        325       185         35         0         0
#> 10 1000104…  1550        780        585       180          0         0         0
#> # ℹ 696 more rows
#> # ℹ 2 more variables: cvap_two <dbl>, cvap_other <dbl>