Compute Relative Centralization

ds_rel_cent(.data, .cols, .name)

rel_cent(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with relative centralization. Leave missing to return a vector.

...

arguments to forward to ds_rel_cent from rel_cent

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_rel_cent(de_county, c(pop_white, starts_with('pop_')))
#> [1] -0.08204111 -0.08204111 -0.08204111
ds_rel_cent(de_county, c(pop_white, starts_with('pop_')), 'rel_cent')
#> Simple feature collection with 3 features and 22 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -75.78866 ymin: 38.45101 xmax: -75.04894 ymax: 39.83901
#> Geodetic CRS:  NAD83
#> # A tibble: 3 × 23
#>   GEOID NAME        pop pop_white pop_black pop_hisp pop_aian pop_asian pop_nhpi
#>   <chr> <chr>     <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>    <dbl>
#> 1 10001 Kent Co… 162310    105891     37812     9346      916      3266       74
#> 2 10003 New Cas… 538479    331836    124426    46921      984     23132      102
#> 3 10005 Sussex … 197145    149025     24544    16954      924      1910       62
#> # ℹ 14 more variables: pop_other <dbl>, pop_two <dbl>, vap <dbl>,
#> #   vap_white <dbl>, vap_black <dbl>, vap_hisp <dbl>, vap_aian <dbl>,
#> #   vap_asian <dbl>, vap_nhpi <dbl>, vap_other <dbl>, vap_two <dbl>,
#> #   .dist <dbl[,3]>, rel_cent <dbl>, geometry <MULTIPOLYGON [°]>